SELECTED TOPICS IN OVERSET TECHNOLOGY DEVELOPMENT AND APPLICATIONS AT NASA AMES RESEARCH CENTER

William M. Chan

NASA Advanced Supercomputing Division NASA Advanced Supercomputing Division

Invited presentation at the 6th Symposium on Overset Composite Grids & Solution Technology, Ft. Walton Beach, FL, October 8–10, 2002

Ames Research Center

OUTLINE

- Overview of overset activities at NASA Ames
- Recent developments in Chimera Grid Tools
- A general framework for multiple component dynamics
- A scripting approach to automating liquid rocket
 sub-systems simulations
- Critical future work for overset technology

OVERSET ACTIVITIES AT NASA AMES

Development

- Chimera Grid Tools (Chan, Rogers)

 \mathbf{A} OVERFLOW-D (Meakin, Potsdam) - ASG auto surface gridding (Klopfer, Onufer) [restart FY03?] AeroDB (Rogers, Aftosmis, Tejnil, Ahmad, Pandya, ...) - XML4CFD (Murman, Chan, Aftosmis, Meakin) Ι - INS3D multi-level parallelizm (Kiris) – OVERFLOW chemistry (Olsen, et al.) - PEGASUS 5 (Suhs, Rogers, Dietz)

Applications

- Missiles (Meakin, Mygaard) - Rotorcraft (Meakin, Potsdam, Strawn, Dimanlig, ...) - Harrier in ground effect (Chaderjian, et al.) [not active] Liquid rocket engine subsystems (Kiris, Chan, Kwak)
 Liquid Glide Back Booster under AeroDB (Chaderjian)
 Cardiovascular system – assist devices, arteries (Kiris, Kwak)

IMPLEMENTATION OF CHEMISTRY IN OVERFLOW

T. Olsen, Y. Liu, M. Vinokur Collaborators: M. Olsen, S. Venkateswaran, D. Prabhu,

Premixed Equilibrium Chemistry

 computation speed comparable with perfect gas - N-S eq. with arbitrary eq. of state, element ratio constant over space and time

- robust reacting capability - N-S, species convection, equilibrium composition eqs. General (Non-Premixed) Equilibrium Chemistry

Computationally Efficient Finite Rate Chemistry

- N–S, species convection, rate eqs.
- general reacting flow capability

Features

- particular functional form) - general thermodynamic model (not tied to a
- general mixtures of perfect gases computational efficiency

Papers to be presented at 41st AIAA Aerospace Sciences Meeting & Exhibit, Jan., 2003.

Olsen, M. E., Venkateswaran, S., Prabhu, D. K. and Olsen, T., Implementation of Equilibrium Chemistry Capability in OVERFLOW, AIAA Paper 2003-0962.

Olsen, M. E., Liu, Y., Vinokur, M. and Olsen, T., Implementation of Premixed

Finite Rate Chemistry Capability in OVERFLOW, AIAA Paper 2003-0963.

equilibrium chemistry

at Mach 6 with premixed

X-33 density contours

BNIDDIAD SOLTOMATIC SURFACE GRIDDING ACCORDANCE OF THE CONTRACT OF THE CONTRAC

Collaborators: Goetz Klopfer, Jeff Onufer (restart FY 03?)

Grid Generator

- SURGRD hyperbolic/algebraic surface grid generator

Grid Quality Analyzer

- single grid (grid-induced truncation error)
 overlap grid (relative volume, cell-difference, stencil gr
- overlap grid (relative volume, cell-difference, stencil quality)

Feedback Controller

- re-adjusts grid generator inputs based on grid quality iterate until grid quality criteria are satisfied
- uclare and dum duanty chieff are satisfied

HARRIER UNSTEADY DATABASE GENERATION

Collaborators: M. Chaderjian, J. Ahmad, S. Pandya, S. Murman

Motivation: Safety

-hot gas ingestion -suck-down effect -ground personnel

Objectives

generate database

denonstrate ability to
capture unsteady flow
structures & frequency

Results

- 35 time accurate RANS solutions (4 million pts) in 1 week using
 0VERFLOW (952 dedicated Origin processors, AIAA 2002–3056)
 captured low frequency oscillations (0.5 Hz)
- captured unsteady flow structures
 developed Dbview GUI for local/remote access of database
- Page 3

CHIMERA GRID TOOLS (CGT)

Steve Mash, Pieter Buning, Bob Meakin Collaborators: William Chan, Stuart Rogers,

RECENT DEVELOPMENTS IN CGT

interface

Graphical user

automation scripts

Configuration

Version 1.7 released in July, 2002

Main new features in OVERGRID

Advanced diagnostics

in batch mode tools

Automated algorithms

- Auto boundary conditions selection and display
- OVERFLOW-D function calls
- Faster I/O and reduction on peak memory requirement Component hierarchy and dynamics module

St. Louis, Missouri, June, 2002 Recent publications at 32nd AIA Fluid Dynamics Conference,

AIAA Paper 2002-3188. Chan, W. M., The OVERGRID Interface for Computational Simulations on Overset Grids,

Best Practices in Overset Grid Generation, AIAA Paper 2002-3191. Chan, W. M., Gomez, R. J., Rogers, S. E. and Buning, P. G.

for Overset-Grid CFD, AIAA Paper 2002-3186 Suhs, N. E., Rogers, S. E. and Dietz, W. E., PEGASUS 5: An Automated Pre-processor

OVERGRID'S MAIN WINDOWS (version 1.9)

ADVANCED DIAGNOSTICS MODULE

triangulation, e.g., pressure

Scalar function on surface

Page 5

- check

estimate on structured grids

Grid induced truncation error

Surface grid topology

Megative Jacobian

- report by grid

– % blanked– % fringe

AUTO BOUNDARY CONDITIONS SELECTION AND DISPLAY

- Auto selection of topological and wall boundary conditions
 Widgets for fast manual override if needed
- Widgets for fast manual override if needed
 Surfaces colored by b.c. type for quick visual check
- Very fast flow solver input for large number of grids
- Select 0 to 0 Unselect Unblank Delete types supported I− xəbni X gnibn∃ Total of 48 b.c. F- I- xabni L gnibn3 Starting J index Magenta = wake cut No. of boundary conditions | Show Types Green = periodic Mall Boundary Conditions for Each Grid Dark blue = viscous Set boundary conditions of each grid to default ☐ Closed trailing edge blane Orange = symmetry

Input file type: PLOT3D, double precis. unformatted, multiple zone, 3D, no iblanks.

□ curves □ const □ □ const K □ const L

□ snusces 12 0 K2 0 T 12 0

0 KWWX

0 → KE

Select All JAMX

OFF-BODY CARTESIAN GRID GENERATION AND DOMAIN CONNECTIVITY USING OVERFLOW-D

Faces

Mem Use Total no.

rett Right

Front Back

RGB DUMP

Reset All Show

₹ 868EE'⊅ Z

3 of ation Center

☐ Tangent Vectors ♦ Flat Shaded

s9xA □

- Module for auto multi-level off-body Cartesian grid generation
 Module for creating object X-rays for hole cutting
- Module for specifying hole cutting information and input creation for OVERFLOW-D/DCF

TO-DO LIST FOR CHIMERA GRID TOOLS

- More robust hybrid surface grid generation tool (quads and triangles) for forces and moments computation
- Surface grid generation time reduction
- More automatic surface curve creation
- > More automatic domain decomposition
- > OVERGRID interface for ASG algorithm/software
- Surface grid generation on CAD investigate CAPRI interface
- More coordination between graphical interface and scripts
- Approx. 80 other items for improvements to CGT and overset technology

A SAMPLE OF APPLICATIONS WITH MULTIPLE COMPONENTS IN RELATIVE MOTION

Paratroop/store Deployment

Aircraft Control Surfaces

Turbomachine

Space Launch Vehicles

Rotorcraft

A FRAMEWORK FOR MULTIPLE COMPONENT DYNAMICS

Collaborators: Scott Murman, William Chan, Milke Aftosmis, Bob Meakin

Motivation

- Computations involving multiple complex bodies in relative motion have been scarce mainly because
- > intensive CPU time required
- problem definition is difficult and not standardized
 Potential benefit for a variety of NASA and DOD programs
- רטנפוונומו שפוופווג וטו מ אמוופגץ טו אאסא מווע שסט אוטטומווים –

Objective

Pevelop common framework that can be used by different Winds of flow solvers (structured or unstructured)

FLOWCART (unstructured Cartesian)

Approach

- Use XML files as information exchange format between GUI (for problem setup) and flow solvers
- Develop API for reading/writing the XML files (XML4CFD) (C and f90 versions)

FRAMEWORKS

Configuration

 Components hierarchy and relationship to grids, geometry, virtual surfaces, etc.

Scenario

- Rigid-body dynamics of componentsPrescribed motion
- > motion under aerodynamic loads
- unconstrained 6-dof
- constrained
- controlled

Configuration Space

A set of configurations defined by parameterizing certain attributes of a baseline configuration (e.g., a space launch vehicle with a range of elevon settings)

CONFIGURATION FRAMEWORK

A configuration is a collection of rigid components

- move relative to its parent Each component is allowed one immediate parent and can
- other root components under an inertial coordinate system A root component has no parent and can move relative to
- A component can be of type struc, tri or container
- Struc and tri components can have associated geometry/grids
- and mirror commands) transforms (a prescribed sequence of rotation, translation, A component can be moved to its initial position via a set of

```
<\Component>
                                           </Transform>
"01"=9lgnA "0.0,0.1,0.0"=sixA "0.0,0.0,0.0e"=191">
                                           <Travelorm>
                    <astal List="9, 11-13" /> </Data>
<Component Name="Body flap" Parent="Orbiter" Type="struc">
```


SCENARIO FRAMEWORK

- A scenario is a collection of prescribed or aerobdof motions
- of a component over a period of time Each prescribed or aero6dof motion describes the dynamics
- periods of time Each component may have different motions during different
- and angular speeds can be arbitrary functions of time translations over a time period where the velocity components Each prescribed motion is a sequence of rotations and

```
</Pre>
<Polsie Center="0.5,0.0,1.0,0.1,0.0"=sixA "0.1,0.0,2.0"=site Center="0.5,0.0,1.1,0.0"=sixA "0.1,0.0,2.0"=sixA
                                    <Translate Velocity="0.0, 0.0, 3.0*t^2" />
               <Pre><Prescribed Component="Orbiter" Start="0.0" End="1.0">
```

- > mass and center of mass Each aero6dof motion requires the input of the component's
- > external forces and moments (gravity, etc.) > moments of inertia and directions of principal axes
- > constraints

PARENT/CHILD COMPONENT HIERARCHY SPACE SHUTTLE LAUNCH VEHICLE

V-22 AND X-38 PARENT/CHILD COMPONENT HIERARCHY

DEMONSTRATION OF FLAPPING WING IN SCOOPING MOTION

CURRENT STATUS AND FUTURE PLANS

Current status

OVERGRID – specification and animation of components hierarchy and dynamics for prescribed motion, read/write XML files for interfacing with flow solvers

OVERFLOW-D (1.5e) and FLOWCART- read Config and Scenario XML files for driving prescribed motions

Future plans

Coufig - configuration space, 'clone' component type

Scenario – prescribed motion with table lookup, aero6dof motion with constraints, controlled/mixed motions

More details in paper:

Murman, S. M., Chan, W. M., Aftosmis, M. J., and Meakin, R. L., An Interface for Specifying Rigid-Body Motion for CFD Applications, Alat AIAA Aerosciences Meeting and Exhibit, January, 2003.

Collaborators: Cetin Kiris, William Chan, Dochan Kwak SCRIPT DEVELOPMENT FOR TURBOPUMP SIMULATIONS

Motivation

Support 2nd generation RLV program

and still provide accurate results?

Objective

components of complete turbopump automatically and flow solver inputs for different grids, create domain connectivity Develop script system to generate

APPROACH

General Gridding Strategy

use ring grids for communication between components Create grid system for each component independently and

First Generation Scripts

- at inflow and outflow boundaries One specialized script for each component with optional rings
- Manual assembly of grids/inputs from different components

Second Generation Scripts

- combination of components and rings Single master script that allows the user to specify any
- Master script calls generic component and ring scripts
- inducer, inlet guide vanes, impeller and diffuser Generic component script can handle geometry for
- inflow, outflow, and between components - Generic ring script can handle ring grid topology for

-diffuser

sproud -

qny

SCRIPT GENERATION

Disadvantages

- Require expertise to build scripts the first time

segstnsvbA

- Allow rapid re-run of entire process
- Easy to do grid refinement and parameter studies
- Easy to try different gridding strategies
- Documentation of gridding procedure

Tcl scripting language

- Works on UNIX, LINUX and WINDOWS
- Integer and floating point arithmetic capability
- Modular procedure calls
- Easy to add GUI later if needed

COMPONENT GEOMETRY PARAMETERS

- number of sections and number of distinct blades per section

- no tip clearance / tip clearance no step / tip clearance with step

.9.l S 2 t.e.

- 1 or 2 control points at blade leading/trailing edges

IMPELLER BLADE TIP CLEARANCE AND SHROUD STEP

TU9TUO GNA TU9NI

ınduı

- profile curves for hub and shroud in PLOT3D format
 (rotated by script to form surface of revolution)
- blade (and tip) surfaces in PLOT3D format
- Parameters that can be changednumber of blades and sections
- global surface grid spacing △s₉ (on smooth regions)
- local surface grid spacing, some independent (e.g., leading)
 trailing edge spacing) and some expressed as multiples
 of ∆sg (e.g., blade span spacing)
- viscous wall normal grid spacing
- marching distances
- grid stretching ratio

Judino

- overset surface and volume grids for hub, shroud, blades
 object X-rays for hole cutters using DCF
- domain connectivity namelist input for OVERFLOW-D

(* from geometry def. to DCF input with SGI R12k 300MHz CPU)

~ 2 weeks

2.9r

Manual

319 sec.

2.21

Script (fine)

234 sec.

Script (coarse)

8.8

User time *

No. of pts (million)

beyond first plane of impeller ring

- no igv points

of igy ring

Days 16

UNSTEADY COMPUTATIONAL RESULTS

Snapshot of particle traces and pressure surfaces near end of third rotation

Grid system – 34 million points Wall clock time – 3.5 days/rotation on 128 dedicated Origin processors using INS3D–MLP

Kiris, C., Chan, W., and Kwak, D., A Three-Dimensional Parallel Time-Accurate the 2nd International Conference on Computational Fluid Dynamics, Sydney, Australia, July 15–19, 2002.

FUTURE PLANS FOR TURBOPUMP SCRIPTING

- Flow solver input creation in scripts
- More input error checks
- Automatic selection of more parameters
- Further robustness improvements
- Perform more tests on different geometry and parameters
- Documentation
- Graphical interface front end

CRITICAL FUTURE WORK FOR OVERSET TECHNOLOGY

In order for overset technology to gain wider utilization, improvements to the process should be made with the following attributes in mind

e.g., less than about 1 hour's effort on complex geometry	səʎ	λes	Low user's effort
	λes	λes	Robustness
	ou	λes	pəədg
	ou	λes	Automation
	Critica	Important	

- Low effort and robust surface grid generation
- surface feature extraction
- surface domain decomposition – auto–surface coverage (grid res
- auto-surface coverage (grid resolution matching, overlap optimization)
- Low effort and robust domain connectivity
- hybrid methods– fast enough for moving–body problems